
一、基本资料
姓名:孙艳歌
职称/学位:副教授/博士
研究方向:数据挖掘、机器学习
主讲课程:《数据结构》、《编译原理》、《高级语言程序设计》
籍贯:河南省平顶山市
Email:yangesun@xynu.edu.cn
二、个人简介
孙艳歌,女,汉族,博士,副教授,数据科学与技术系主任,硕士生导师,信阳市学术技术带头人、信阳市青年科技专家,信阳师范大学青年骨干教师,校“南湖学者奖励计划”青年项目入选者。主持省级教学改革项目3项,主持河南省课程思政示范课程2门,主编河南省十四五规划一部,获河南省教师教育教学成果二等奖1项,信阳师范tengbo9885手机版教学成果一等奖1项。参与国家自然科学基金项目2项,主持省级项目3项;发表学术论文30余篇,其中SCI论文检索12篇,EI期刊论文2篇,中文核心8篇,授权实用新型发明专利2项,软件著作权2项。
三、学习工作简历
2013/09-2019/06,北京交通大学,tengbo9885手机版,博士
2004/09-2007/06,华中师范大学,计算机科学系,硕士
2000/09-2004/06,信阳师范tengbo9885手机版,tengbo9885手机版,学士
四、项目成果
1. 论文
[1] Yange Sun, Zhihao Li, et al. TDDet: A novel Lightweight and Efficient Tea Disease Detector. Computers and Electronics in Agriculture, 2025,4. (SCI一区 Top期刊)
[2] Yange Sun#*, Wu F, Guo H, Li R, Yao J and Shen J. TeaDiseaseNet: multi-scale selfattentive tea disease detection. Front. Plant Sci., 2023.14:1257212.(SCI一区)
[3] Yange Sun#*, Honghua Dai. Constructing accuracy and diversity ensemble using Pareto-based multi-objective learning for evolving data streams. 2020, Neural Comput & Applic. (SCI, 中科院二区, CCF推荐期刊)
[4] Yange Sun#*, Yi Sun, Honghua Dai.. Two-Stage Cost-Sensitive Learning for Data Streams with Concept Drift and Class Imbalance. IEEE Access, 2020, 8:191942-191955. (SCI, 中科院二区)
[5] 孙艳歌,吴飞,姚建峰,周棋赢,沈剑波.多尺度自注意力特征融合的茶叶病害检测方法[J].农业机械学报,2023,54(12):308-315. (EI收录)
[6] Yange Sun#*, etal. A Strip Steel Surface Defect Salient Object Detection Based on Channel, Spatial and Self-Attention Mechanisms. Electronics 2024, 13, 4277. (SCI, 中科院三区)
[7] Yange Sun#*, Jiang, M., Guo, H., Zhang, L., Yao, J., Wu, F., & Wu, G. (2024). Multiscale Tea Disease Detection with Channel–Spatial Attention. Sustainability, 16(16), 6859. (SCI, 中科院三区)
[8] Yange Sun#*, Meng Li, Huaping Guo et al. MSGSA: Multi-Scale Guided Self-Attention Network for Crowd Counting. Electronics 2023, 12, 2631. (SCI, 中科院三区)
[9] Yange Sun#, Meng Li, Lei Li and Han Shao. Computational Intelligence and Neuroscience. Cost-Sensitive Classification for Evolving Data Streams with Concept Drift and Class Imbalance. Volum 2021. pp. 1-13. (SCI, 中科院三区)
[10] Yange Sun#, Han Shao, Bencai Zhang. Ensemble based on Accuracy and Diversity Weighting for Evolving Data Streams. International Arab Journal of Information Technology. 2022. 19(1): 90-96. (SCI 中科院四区)
[11] [6] Yange Sun#, Zhihai Wang*, Yang Bai, Hong-Hua Dai and Saeid Nahavandi. Computational Intelligence and Neuroscience. A Classifier Graph based Recurring Concept Detection and Prediction Approach. Volum 2018. pp. 1-13. (SCI, JCR三区)
[12] Yange Sun#, Zhihai Wang*, Haiyang Liu et al. Tracking Recurring Concepts from Evolving Data Streams using Ensemble method. International Arab Journal of Information Technology. 2019. 17(5). (SCI)
[13] Yange Sun, Zhihai Wang, Haiyang Liu et al. Online Ensemble using Adaptive Windowing for Data Streams with Concept Drift. International Journal of Distributed Sensor Networks. vol. 12, no. 5, 2016. pp.1-9. (SCI)
[14] Yange Sun, Meng Li, Huaping Guo et al. MSGSA: Multi-Scale Guided Self-Attention Network for Crowd Counting. Electronics 2023, 12, 2631.(SCI)
[15] [Yange Sun, Zhihai Wang, Hongtao Li, and Yao Li. A Novel Ensemble Classification for Data Streams with Class Imbalance and Concept Drift. International Journal of Performability Engineering, 2017, 13(6): 945-955. (EI)
[16] Yange Sun. Efficient Ensemble Classification for Multi-label Data Streams using Change Detection. Information, 2019, 10(5): 158. (EI)
[17] 孙艳歌, 王志海, 原继东. 数据流滑动窗口方式下的自适应集成分类算法[J]. 北京交通大学学报, 2016, 40(5):9-15. (中文核心期刊)
[18] 孙艳歌, 王志海等. 基于信息熵的数据流自适应集成分类算法, 中国科技大学学报. 2017, 47 (7): 575-582. (CSCD核心期刊)
[19] 孙艳歌, 王志海, 白洋. 一种面向不平衡数据流的集成分类算法[J]. 小型微型计算机系统, 2018, 39(6):1178-1183. (中文核心期刊)
[20] 孙艳歌, 王志海, 黄丹. 基于时间的局部低秩张量分解的协同过滤推荐算法. 计算机科学, 2017, 44(07): 227-231. (中文核心期刊)
[21] 孙艳歌,邵罕,蒋明毅.基于闭合频繁模式的半随机森林数据流分类算法[J].信阳师范tengbo9885手机版学报(自然科学版),2024,37(04):442-448.
[22] 孙艳歌,吴飞,周棋赢.一种茶叶病害的深度学习检测算法[J].信阳师范tengbo9885手机版学报(自然科学版),2024,37(02):246-251.
[23] 孙艳歌,陈旭生,邵罕,等.基于图模型的数据流分类算法[J].信阳师范tengbo9885手机版学报(自然科学版),2020,33(04):670-674.
2. 项目
(1)河南省自然科学基金青年项目“时间序列数据流自适应学习技术及其在社交媒体用户行为分析中的应用研究”,2023年,主持完成.
(2)计算机科学与技术学科研究生“四位一体”创新培养模式改革与实践,河南省高等教育教学改革研究与